Products

SurveyMonkey is built to handle every use case and need. Explore our product to learn how SurveyMonkey can work for you.

Get data-driven insights from a global leader in online surveys.

Explore core features and advanced tools in one powerful platform.

Build and customise online forms to collect info and payments.

Integrate with 100+ apps and plug-ins to get more done.

Purpose-built solutions for all of your market research needs.

Create better surveys and spot insights quickly with built-in AI.

Templates

Measure customer satisfaction and loyalty for your business.

Learn what makes customers happy and turn them into advocates.

Get actionable insights to improve the user experience.

Collect contact information from prospects, invitees, and more.

Easily collect and track RSVPs for your next event.

Find out what attendees want so that you can improve your next event.

Uncover insights to boost engagement and drive better results.

Get feedback from your attendees so you can run better meetings.

Use peer feedback to help improve employee performance.

Create better courses and improve teaching methods.

Learn how students rate the course material and its presentation.

Find out what your customers think about your new product ideas.

Resources

Best practices for using surveys and survey data

Our blog about surveys, tips for business, and more.

Tutorials and how to guides for using SurveyMonkey.

How top brands drive growth with SurveyMonkey.

Contact SalesLog in
Contact SalesLog in

Pearson correlation vs. Spearman correlation methods

So you’ve gathered your data, and now you want to determine whether there’s a relationship between two key variables. Find out how to do just that.

The procedure to use is, of course, a correlational analysis, but which type should you use? In this guide, we’ll walk you through the two main methods you could use for correlation. These methods are called the Pearson correlation and the Spearman correlation. We’ll take a look at what each technique involves, when each should be used, and the types of research questions that could be addressed. Also, if you are conducting usage and attitudes (U&A) research or concept testing, we can perform the analysis for you.

Before going into detail about the statistical techniques used to perform a correlational analysis, let’s quickly define what we mean by correlation. Correlational analysis is a bivariate (two variable) statistical procedure that sets out to identify the mean value of the product of the standard scores of matched pairs of observations. The purpose of this type of analysis is to find out whether changes in one variable produce changes in another. For example, does customer satisfaction increase with the size of discount offered at a grocery store or does employee engagement rise with salary increases? Note that correlation is used to infer whether there is a relationship between the two variables, not whether changes in one variable cause changes in another. In other words, correlation says nothing about causality. 

In our example above, for instance, employees might be more engaged because they're rewarded with higher salaries. Alternatively, higher levels of engagement might drive managers to increase their wages. Correlation says nothing about which variable impacts the other, but rather tells us whether there is a simple relationship between the variables, the direction of the relationship (positive or negative), and its strength.

Graph of key drivers

Of two techniques used to perform correlation analysis, the Pearson correlation method is probably the most recognized and widely used in market and business research. Let’s take a look at what the Pearson correlation method is, and how you can use it.

The Pearson product moment correlation coefficient can be described  as a way to measure the strength of a linear relationship between two variables—which can be used to find out if there is  strong association between one variable versus another.  

Imagine you have two variables—such as employee engagement and employee salaries​​—plotted on a simple scatter plot graph. The Pearson correlation essentially tries to utilize a scatter plot by drawing a line through the data in order to find out whether the two compariables are covary with one another and to what extent. That is, Pearson correlation coefficient identifies whether:

  • There is a positive correlation between the two variables. That is, whether an increase in employee engagement is associated with an increase in salaries.
  • There is a negative correlation between the two variables. More specifically, whether a rise in salaries is associated with a reduction in employee engagement, or vice versa.
  • There is no relationship between the variables. In other words, changes in salaries and employee engagement are unrelated to one another.

Insight into this relationship is a first step in understanding how variables of interest might relate to one another, and could also prompt further causal investigation. 

The Pearson correlation coefficient test compares the mean value of the product of the standard scores of matched pairs of observations. Once performed, it yields a number that can range from -1 to +1. Positive figures are indicative of a positive correlation between the two variables, while negative values indicate a negative relationship. Furthermore, the value of r represents the strength of the relationship. A Pearson’s r that is near the value of 1 is suggestive of a stronger relationship between the two variables. As a rule of thumb, the following values can be used to determine the strength of the relationship:

  • A Pearson correlation coefficient of between 0 and 0.3 (or 0 and -.03) indicates a weak relationship between the two variables
  • A Pearson correlation coefficient of between 0.4 and 0.6 (or -.04 and -.06) indicates a moderate strength relationship between the two variables
  • A Pearson correlation coefficient of between 0.7 and 1 (or -.07 and 1) indicates a strong relationship between the two variables.
Graph of positive correlation, no correlation, and negative correlation

For example, imagine that you’ve developed some marketing concepts that you’ve begun testing with some potential customers. For each concept, you’re interested in learning whether evaluations of the appeal of the concept are associated with stronger intent to purchase. 

Comparisons of Concepts A, B and C yield Pearson correlation coefficients of .3 .6 and .9 respectively. Based on these three figures, you can infer the following:

  • For all three market concepts, there is a positive correlation between evaluations of concept appeal and intent to purchase the purchase
  • However, the correlation between concept appeal and intent to purchase is strongest for Concept C, and weakest for Concept 
  • For Concept B, there is positive correlation between concept appeal and purchasing intent but the relationship is moderate

Using these inferences, you might decide that Concept C is the most appropriate concept to employ in your next marketing campaign. However, first, you’ll need to determine whether the correlation you’ve observed is statistically significant. Let’s look at the formula used to determine Pearson’s r in more detail, and how you can combine this formula with a t test to determine significance. 

The Pearson correlation coefficient  coefficient (r) is calculated using the following expression:

Pearson correlation coefficient formula

Where xi represents the values of the x variable in a sample, x-bar indicates the mean of the values of the x variable,  yi indicates the values of the y variable, and y-bar indicates the mean of the values of the y-variable. S indicates the sum of squares of the x and y variables respectively, and n is the number of observations of x and y variables. 

After an r value is produced, the next step is to determine whether the value is of statistical significance. The importance of this step cannot be overstated. It is possible to observe two variables that seem to be related to one another, but the relationship is in fact meaningless. 

For example, you might observe a relationship between concept appeal and intended purchase frequency, leading you to believe that the concept that has the greatest appeal will lead people to spend more. However, if this relationship occurred merely through chance, your marketing campaign might turn out to be an expensive waste of cash. 

Statistical significance indicates that we are confident of a relationship between the two variables; in other words, that the result did not occur by chance.

A t test is used to establish if the Pearson’s r statistic differs significantly from zero. Statistical significance (indicated by the probability, or p) indicates whether the observer can be confident of a relationship between the two variables at different levels. For instance, a p value of .05 indicates that there is only a 5% chance that that relationship occurred by chance, while a p value of .10 indicates that there is a 10% chance that the observed correlation is a chance event.  

The t statistic always has the same sign (+ or -) as the r value and  is calculated as follows:

t = r* √((n-2) / (1 - r*r))

Once the t-value is calculated, it can be compared with the critical value from a standard t-table at the appropriate degrees of freedom (n-1) and the level of confidence (p value) you wish to maintain in order to determine the significance, and therefore the extent to which the correlation you have observed is meaningful.

Learn what your audience really wants with an AI-powered solution. Shape your product and marketing strategy with our Usage and Attitudes solution.